
24



25

Big data is everywhere. Massive sets of digital data are 
being collected or generated for science, medicine, 
astronomy and cosmology, national security, cyber-
security, situational awareness for our warfighters, social 
networking, financial markets, and more. And those 
datasets are big on a scale that boggles the mind.
A good example of big data collected from nature is the 
recently released database from the 1,000 Genomes Project, 
an international effort to establish a detailed catalog of 
human genetic variation. Made publicly available on “the 
cloud” through Amazon Simple Store Services, the database 
contains 200 terabytes (200 trillion bytes) of DNA sequence 
data covering the complete genomes of close to 2,000 humans 
from 26 populations. If printed as text, these endless strings 
of genetic code, written in only four letters A, T, C, and G 
(standing for the four nucleotide bases of DNA: adenine, 
thymine, cytosine, guanine), would fill 16 million file cabinets 
or create a paper stack the height of a skyscraper. 

This staggering pile of data is a potential gold mine of 
information for studying such things as differences in 

human disease resistance and drug metabolism. But 
can the medical community mine the gold? Does it 
have the necessary infrastructure and analysis tools 

for the job? Only recently, because of a $200 million 
federal big data initiative, were the necessary tools 

developed and made available to the medical research 
community for accessing and analyzing the 1,000 Genomes 

database for insights into human health and disease. It takes 
that kind of effort to convert big data into valuable data.

The national laboratories  
simulate systems that are otherwise 

difficult or impossible to test.

Bigger than the dataset collected by the 1,000 Genomes 
Project are the datasets generated by today’s largest and 
fastest supercomputers, which are being used by the 
national laboratories to simulate systems that are difficult 
or impossible to test. The laboratories’ supercomputers are 
petaflop machines that achieve more than a quadrillion 
“floating-point” operations a second (petaflops) and generate 
big data—hundreds of terabytes of new data—to simulate 
each step in the dynamic performance of complex systems of 
national interest. Those systems include the changing climate, 
fusion reactors and advanced fission reactors, new materials 
at the nanoscale (one billionth of a meter), complex chemical 
and biological systems, and nuclear weapons systems, which 
the United States has not tested since 1992 in order to 
promote the goals of the Comprehensive Test Ban Treaty. 

“To manage the U.S. nuclear weapons stockpile without 
testing, Los Alamos and Livermore simulate weapons rather 
than blowing them up, and to achieve the highest-fidelity 
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simulations possible, we use the largest computers available 
and generate big data at an ever-increasing scale,” explains
Gary Grider of the High Performance Computing Division at 
Los Alamos. “Th e problem of big data is always about value—
about trying to learn something from the data. At that level, 
we’re the same as Google: we want to turn big data into useful 
information in an aff ordable and reliable way. And that way 
must also be scalable—remaining aff ordable and reliable as 
datasets continue to grow exponentially.” 

But are the national labs getting the most out of this big 
weapons simulation data from the latest supercomputers? 
And are they ready with the data management and analysis 
tools to handle the much larger datasets that will be produced 
by the next generation of machines?

To achieve the highest fi delity simulations 
possible, we use the largest computers
available and generate big data at an

ever increasing scale.

Th e current answer is a big NO! Unlike the 1,000 Genomes 
Project big data initiative, the initiative for big weapons data 
is nowhere near complete, but it has been going on quietly 
behind the scenes at Los Alamos for almost a decade.

The Big Data Bottleneck
For the past 20 years, supercomputers have generated ever-
more simulation data at ever-faster speeds, but those data are 
not useful until they are selected and moved to permanent 
storage, organized into fi les, and then accessed by auxiliary 
computers that analyze the data and create visualizations 
of the simulated systems. All those data-handling steps are 

being challenged by big simulation data, but the biggest 
challenge is the growing mismatch between the rate at which 
supercomputers generate data and the rate at which those 
data can be transferred from the supercomputer to magnetic 
disk storage, the best permanent storage around. Like cars 
trying to exit a fi ve-lane highway by way of a narrow ramp, 
big simulation data of the future will hit a big bottleneck in 
the transfer path between the supercomputer and storage
(see fi gure below).

Without a solution, computing in
2020 will see crippling data traffi  c jams

in which exafl op supercomputers
are idle half the time.

To be specifi c, the supercomputer world is racing to increase 
calculation speed a 1,000-fold by 2020—from petafl ops 
to exafl ops (a quintillion operations a second)—whereas 
data-transfer rates to disk storage are expected to increase 
only 30-fold by that year. Without a solution to this growing 
mismatch, computing in 2020 will see crippling data traffi  c 
jams in which exafl op supercomputers are idle half the time, 
bloated with data stuck at the bottlenecks separating data 
generation from data storage and analysis. 

Computing at the exascale has oft en been viewed as a holy 
grail. For the national security labs, that is because exascale 
is the scale at which high-fi delity, 3D weapon simulations 
become practical (see “Will It Work?” in this issue). But the 
closer supercomputing speeds get to the exascale, the larger 
the specter of big data becomes. To prepare for the next-
generation computers and ensure that they live up to their 
promise, Grider and colleagues are working closely with 

Today’s Supercomputing Environment

Disk storage

Looming
big data 
bottleneck

Slow data
Every few hours, the processors stop and 
download a checkpoint to storage. In the 
future the checkpoint could get so large that 
the download would take hours rather than 
minutes—a big data bottleneck.

Remote computers do the 
visualization and analysis 
of the simulations, but not 
until the stored data are 
available.

Processors in a petafl op supercomputer 
can create big data at each time-step
of a simulation. 

1.

2. 
3. 
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industry and coming up with aff ordable, scalable solutions. 
Th ese will not only relieve the big data bottlenecks to disk 
storage but presage a more eff ective approach for managing 
big data simulations at the exascale and beyond. 

How Big Simulations Get Done
To better understand these big data solutions, you have to 
know how today’s high-performance computers work. Th ese 
machines are massively parallel: they can contain more than 
a million processors, and all million-plus of them work in 
tandem on tiny bits of the same simulation. 

Suppose the simulation is needed because a killer asteroid, 
one the size of the Rose Bowl, is on a collision course with 
Earth, and the government wants to know if a nuclear 
detonation can destroy it. Th is scenario cannot be tested in a 
laboratory. But it could be simulated on a supercomputer to 
help predict whether a nuclear detonation would succeed
(see “Killing Killer Asteroids” in this issue).

The simulation might run from
weeks to months. And the work

is never smooth going.

To do the simulation, a model of an asteroid is placed in a 
computational box (a way to specify the 3D coordinates of 
every point in the asteroid model). In this case, the super-
computer is to simulate the entire event, that is, compute all 
the heating, vaporizing, fracturing, and accelerating, along 
with the fi nal trajectories of the asteroid fragments, that result 
from the blast wave from a nuclear detonation hitting
the asteroid.

To simulate that event on a modern supercomputer, the 
computational box is divided into a 100 million smaller cubes 
of equal size, just as a Rubik’s cube is divided into smaller 
cubes. Groups of the small cubes are assigned to diff erent 
processors, and each processor solves the physics equations 
describing what the blast wave does to the material in its 
set of cubes. Th e event’s duration is divided into discrete 
time steps (say, several microseconds long), and together, 
the processors simulate the event one time step at a time. 
When a processor computes that fragments of rock and 
vaporized rock in one of its assigned cubes are crossing into 
a neighboring cube, the processor must pass its latest data 
about their position, density, temperature, velocity, and so on 
to the processor for the neighboring cube. 

Even though all the processors are sharing the computational 
load, each processor must solve complicated sets of physics 
equations for each of the hundreds of thousands of time steps, 
so the simulation might run for weeks to months to reach 
completion. And the work is never smooth going. A petafl op 
computer has millions of parts connected by miles of cable, 
and a processor fails on average every 10 to 30 hours,

Create a computational
box to do the simulation 

and divide it into 100 million 
cubes.

Place a model of the
asteroid in the computational 

box and assign groups of the 
cubes to diff erent processors.

Allow processors to compute 
how the contents of each

cube evolve.

How a Simulation Is Done
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corrupting some of the data needed for the next time step. And 
because what happens in one cube depends on what comes 
in from and goes out to neighboring cubes, all the processors 
must work cooperatively. The failure of one processor has a 
domino effect: when one stops, all the rest must stop. Does that 
mean the simulation must return to “start” each time a failure 
occurs? That would be like writing a document and never 
using the “Save” command—a very dangerous strategy.

Instead, a supercomputer has to play defense. Every 4 hours, 
it stops and creates a checkpoint, the analog of pressing 
“Save” or taking a snapshot of the simulation. All the 
processors stop at the same simulation time step; update the 
data describing the temperature, pressure, position, velocity, 
and so on of materials in their cubes; and send the data to 
the storage system, which is outside the main computer. 
Thus, whenever one or two processors fail and the computer 
crashes, the computer automatically stops, retrieves the data 
from the nearest checkpoint, and resumes computing at that 
point. These reference checkpoints not only provide a backup 
but also record the calculation’s progress.

A supercomputer has to play defense. 
Every 4 hours, it stops and creates a 

checkpoint, the analog of pressing “Save.”

Storing checkpoints sounds simple, but a petaflop super-
computer must save as many as 50 to 100 terabytes of data 
for each checkpoint, so this kind of “Save” can be very costly 
in time. Grider explains, “The disk drive in your computer 
at home might have 1 terabyte of storage capacity, and it 
would take you about 11 hours of writing to fill that up. We 
need to transfer all 50 to 100 terabytes in about 5 minutes 
because while we’re writing to memory, we’re not getting any 
science done. So we need 10,000 disk drives hooked together 
to transfer the checkpoint data to all the storage disks in 
parallel and get the job done in minutes.” On today’s petaflop 
machines, the job does get done, but barely.

Years ago, Los Alamos anticipated that its next big 
development after Roadrunner, the first petaflop machine, 
would be Trinity, which, at a speed of 40 to 100 petaflops, 
would need to store 2 or 3 petabytes of data at each checkpoint. 
That would require buying 30,000 disk drives at a cost of 
$30 million, or 20 percent of the machine’s cost, and they 
would be difficult to maintain. An exascale machine would 
need about 100,000 disk drives, costing 40 to 50 percent of the 
machine’s cost; that would be unaffordable. Without those disk 
drives, it would take an hour or two to dump the data at each 
checkpoint, so a major fraction of the computing time would 
be lost to defensive storage. Neither option was acceptable 
and both would get worse over time. “Our only course,” 
says Grider, “was to initiate research and development with 
government, academia, and industry and find an affordable, 
scalable way around the big data bottleneck.”

Burst Buffers—From Big Data to Fast Data
The bottleneck problem that Los Alamos is solving with 
industry is two-fold: decreasing how long processors remain 
idle when transferring checkpoint data to storage and 
increasing how quickly checkpoint data is fed back to the 
processors when they fail. 

The solution that is in the works capitalizes on flash 
memories—solid-state storage devices that can write (store) 
data about 10,000 times faster than disk drives can. If flash 
memories are placed between the processors and the disk 
storage, they can “buffer” the mismatch between the burst of 
checkpoint data needing to be downloaded very quickly and 
the disk drives, which write data slowly. Grider coined the 
name “burst buffer” to describe the device that will hold this 
rapid-writing flash memory and have the right connections 
to both the supercomputer and the disk storage.

Grider explains, “The concept of the burst buffer is to have 
the burst of data written onto flash very quickly and then 
have it written from flash to disk slowly. That way you don’t 
need so many disk drives, and you use the storage disks for 
what they’re good at, namely capacity storage—storing large 
quantities of data securely.” 

Imagine racks of processors that are doing the simulation 
and beneath them the permanent storage system. Each of the 
million processors is connected to one of many thousands 
of burst buffers that together act as a staging area to hold 
checkpoint data before they are sent to permanent storage 
(see figure, opposite page). An entire checkpoint in the 
form of a huge petabyte data stream—a burst of data—is 
downloaded from all the processors in parallel and is 
absorbed in seconds by the flash memories in the buffers, the 
processors then resume the simulation. Later, the checkpoint 
is drained from the burst buffers to disk storage, but at the 
much slower rate that the disk drives can handle. That means 
that the processors are stopped so briefly for the downloading 
to flash that they run almost continuously, with data being 
written from flash to disk in the background while the 
processors keep doing science.

We’ll be able to watch the simulation 
as it’s happening and intervene if we see 

something that needs changing. 
This is truly big data becoming fast data.

Further, if one adds two flash memory units to each burst 
buffer, one of those units could hold onto the most recent 
checkpoint data for hours, and download it to disk storage 
only after the second flash unit had received data for a new 
checkpoint from the processors. Because data downloading 
would toggle between units, a complete checkpoint would 
always be available in the burst buffers, ready to be fed back 
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to the processors if a failure required the simulation to be 
restarted. Flash would virtually eliminate delays caused by 
both a processor failure and a slow-moving “Save.”

Once burst buff ers have enough fl ash memory units to 
temporarily store checkpoint data, it becomes possible to 
add graphics processors to each burst buff er. Th en, instead 
of waiting until the end of a run for a visualization of the 
completed simulation, the current situation, the checkpoint 
data could be processed into a visualization while the 
simulation was in progress!

Los Alamos knew back in 2006
it needed to innovate, and it came up

with a winner.

“Th at means we’ll be able to watch the simulation as it’s 
happening and intervene in the middle of a run if we see 
something that needs changing,” says Grider. Th is is truly
big data becoming fast data—useful at the moment it 
becomes available.

“Th is is the beginning of a big story,” continues Grider. 
“Adding graphics processors to the burst buff er is an example 
of what’s called ‘process-in-memory’—processing data 
where it’s most appropriate. Today we move the data to the 
processors, do the math (addition, multiplication, whatever it 
is), and then write the results back out to memory [storage]. 
But the time it takes to move the data is wasted because it’s 
time in which no computing is going on. It may take less time 
to ship the process to where the data is, and that’s what we’d 
be doing by shipping analysis and visualization to a processor 
in the burst buff er. So the big story is that processing in the 

Big Data into Fast Data

Graphics processors on 
burst buff ers process 
checkpoint data
immediately and make
it available for viewing
during a simulation.

Burst buff ers allow a 
burst of checkpoint 
data to be down-
loaded in seconds to 
fl ash memory.

future could go on wherever there’s data—in memory, in 
fl ash, near disk, near tape. Th at way some of the processing 
for a big simulation can take place off  the main computer.” 
Th at is how big data will become fast data.

For weapons simulations, the burst buff er idea is great 
because it not only allows the downloading or uploading of 
big data in a few minutes, but it also enables big data to be 
processed during the simulation, making it useful data.

Race to the Exascale
Th e Laboratory was driven to develop the burst buff er so it 
can to do high-resolution 3D simulations of nuclear weapon 
detonations at the exascale by 2020, but it also needs it 
because of the constraints of performing exascale simulations 
aff ordably and within practical time limits. Los Alamos 
knew back in 2006 that big data at the exascale would lead 
to big data bottlenecks and make the old way of doing 
supercomputing unaff ordable. It knew it needed to innovate, 
and it came up with a winner.

“Th e burst buff er with its fl ash memory is the only way we’ll 
be able to build a cost-eff ective exafl op machine in the 2020 
time frame,” explains Grider, “and we’ll be trying it out on 
Trinity in the 2015–2016 time frame. Th en, when we really 
need it, we’ll have it working. And even as early as Trinity, 
we’ll be testing burst buff ers with processors that can analyze 
and distill the data while the simulation is running.” And 
that’s not all. According to Grider, Trinity will be a testbed 
not only for the burst buff er, but for debugging some of the 
soft ware Los Alamos will need to keep an exafl op machine 
running smoothly. 

Los Alamos is doing serious prepping for the exascale.

~Necia Grant Cooper
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Later, burst buff ers slowly download 
checkpoint data to storage while 
processing resumes.
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